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An implicit finite-difference method is developed to integrate the parabolic Navier- 
Stokes equations along the main direction for flow over a finite-width plate at 0 and 10” 
angles of attack. This method utilizes the fractional steps (splitting) technique to seek the 
solution from a sequence of two-dimensional difference equations. A new linearization 
algorithm is devised to facilitate the calculation of Jacobian matrices in a Taylor series 
expansion and to perform successive iterations until the conservative-law equation is 
recovered. Both backward and centered implicit schemes are used in the splitting tech- 
nique and the results are compared. Available numerical solutions and experimental data 
obtained at low-Reynolds-number conditions are also used for comparison. The backward 
implicit method provides a more successful solution, which ranges from the merged-layer 
to the strong-interaction regimes. The computed flowfield shows a shear layer around the 
side edge and small region of reversed lateral flow on the lee side of the plate at an angle of 
attack. 

I. [NTRODUCT~~N 

The problem of analyzing viscous flow over simple configurations is of practical 
importance in fluid dynamics in connection with such applications as the design of 
high-speed flying vehicles and the investigation of flow phenomena in test facilities. 
The viscous and heat conducting effects are known not only to dominate the flow 
within a narrow layer adjacent to the solid boundary, but also to play an important 
role in shaping the flow structures near the leading edge, around the side edge, and 
behind the object. These flowfields, being far more complex and interesting than their 
two-dimensional counterparts, are not amenable to most of the existing methods of 
analysis due to some difficulties. In the first place, the governing equations, known as 
the Navier-Stokes equations, provide an excellent description of the flowfield, but they 
are of an elliptic type for which the numerical techniques are lengthy and cumbersome. 
Second, because of the occurrence of shocks and shear layers resulting in steep 
gradients of flow properties, sufficiently fine resolution is required to maintain 
acceptable accuracy as well as a stable solution. Thus, even in some situations where 
a numerical solution is feasible, the computation cost is prohibitively high for frequent 
applications. Consequently, there have been some atempts to solve the flow problems 
with slightly different governing equations which possess parabolicity in one of the 
independent variables, usually along the coordinate defining the main flow velocity. 
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This set of equations, termed the parabolic Navier-Stokes equations, is integrated 
spatially and requires simpler and more efficient numerical techniques than those for 
the elliptic Navier-Stokes equations. The object of the present work is to develop a 
new algorithm to solve the parabolic equations and to evaluate its validity by using a 
problem of the flow passing a finite-width plate. 

There exists strong evidence that the parabolic Navier-Stokes equations can be used 
successfully to describe a large class of flow problems in which the gradients of the 
physical dissipations and the pressure can be neglected in the direction of the main 
flow. Successful applications have been made by Rubin, Cresci, and their co-workers 
for the computation of supersonic leading-edge flowfields over three-dimensional 
geometries such as a finite-width plate by Nardo and Cresci [I], an axial corner by 
Rubin and Lin [2], and a sharp cone by Lin and Rubin [3] and by Helliwell and 
Lubard [4]. The subsonic or incompressible viscous flow within a square duct has 
been considered by Patankar and Spalding [5] and by Briley [6]. Although the nature 
of the problems studied is quite different, the governing equations employed have a 
close resemblance in the underlying assumption that the second-order derivatives 
with respect to the streamwise coordinate are much smaller than those with respect to 
the transverse and lateral coordinates. Furthermore, the numerical techniques used 
are typified by implicit integrations marching from one plane to another, both 
normal to the streamwise coordinate. The basic schemes may be grouped into three 
categories: a noniterative alternating-direction implicit (ADI) method [ 1, 61, an 
iterative predictor-corrector method [224], and an inexactdouble-sweep method [5]. The 
purpose of these schemes is to yield an equivalent solution of the sparse-banded 
system of equations in two or more steps, each concerning the solution of a simpler 
tridiagonal system of equations. The ADI method has unconditional stability that 
allows for a large integrative step, regardless of the fine space discretization on the 
normal plane which resolves steep gradients within a boundary layer or shock. The 
predictor-corrector method, which can be viewed as the line Jacobi or the line Gauss- 
Seidel method for solving a linear system of equations, has shown some appealing 
capabilities when coupled with the Newton technique for solving nonlinear equations. 
However, the step increment must satisfy convergence criteria, although they are less 
stringent than that for explicit methods. 

Since the AD1 method is in fact one version of the factorization of difference 
operators, the potentials and limitations of other versions should be explored in the 
continuing development of methods with superior stability, accuracy, and efficiency 
for practical computations of three-dimensional flows. The essential concept is based 
on the splitting up of a multidimensional operator into a sequence of two-dimensional 
operators and the use of one method of solution for each of the simpler operators. If 
the operator is linear, this idea can be worked out readily by means of factorization 
similar to algebraic equations [7]. Obviously, various schemes for approximating the 
time and space derivatives in the differential equations can be incorporated to exploit 
their maximum capability since the requirement for computing time and storage is 
more reasonable for two-dimensional operators than for three-dimensional operators. 

The other portion of the numerical algorithm is equally important; it involves the 
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formulation of difference equations and the development of a solution procedure for 
the resulting nonlinear equations. A mesh of cells is used because of its recognized 
compatibility with the conservative laws both locally and globally, as discussed by 
Cheng [LX]. This cell formulation is generally recommended for flow-containing shocks 
and boundary-layer separations, which are frequently seen in supersonic viscous 
flows. The nonlinear difference equation in two-dimensional form is solved by a 
rigorous iterative procedure using the primitive variables and their derivatives. The 
most significant feature is that the convergence leads to the satisfaction of the conser- 
vative-law equation. The linearization error is controlled by a prescribed tolerance 
parameter on the order of the truncation error associated with the difference scheme. 
These aspects have received considerable attention in this study because they are 
crucial to the success of any flowfield compution. This algorithm differs from the one 
developed by Beam and Warming [9] for the unsteady Navier-Stokes equations in the 
use of the factored conservative-law form, the Jacobian of the Taylor series expansion 
for linearizing the governing equations, and the iterative procedure for reducing the 
linearization error. Referrence [9] has taken a noniterative linearization approach 
similar to the one in Ref. [6], which has been generalized for an unsteady three- 
dimensional entrance flow in a duct by McDonald and Briley [lo]. The present 
linearization procedure distinguishes itself from various other procedures in the 
consistency, which is comparable to the differencing scheme, in the generality for 
treating nonuniform cells in both directions on the normal plane, and in the simplicity 
of the coefficients for the block tridiagonal matrix. 

As a test case for the new algorithm, the supersonic flow past a finite-width plate at 
both 0 and 10” angles of attack is considered. The results reported in Ref. [l] appear 
to have some difficulty since the computation is terminated prematurely at a stream- 
wise location very close to the leading edge and the predicted inviscid-viscous inter- 
action at the side edge is not as strong as anticipated. These difficulties may be caused 
in part by the fact that the ADI scheme is only marginally stable and therefore not 
suited to solutions containing sharp gradients, and in part by the use of uniform mesh 
points which would fail to detect any fine-scale phenomena around the side edge. 
Since experimental data are also available for comparison, this case is selected to 
validate the present algorithm and to explore its potential capabilities. 

The discussion is divided into the following sections: finite-difference methods, 
solution to the nonlinear difference equations, governing equations and boundary 
conditions for flow over a finite-width plate, nonuniform mesh system and stability 
analysis, discussion of the results, and conclusions. 

II. FINITE-DIFFERENCE METHODS 

Consider a model partial differential equation in the following conservative-law 
form: 

F, + G, + H, = 0, (1) 
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where the vectors F, G, and H are the functions of a simple vector V whose componnts 
are dependent variables. The x, y, and z are Cartesian coordinates. If the backward 
implicit scheme is applied directly to (l), the resulting difference equation is 

The subscripts j and k denote the locations of the cell point; j 3: 4, k and j, k i f 
denote the location of the cell line (Fig. 1). The su2:rscripts i and i f 1 refer to the 
previous and present values. The computational domain defined in the y-z plane is 
discretized to have a mesh of cells, each having variable dy, and dz, . The integration 
step increment, dxi , is also determined prior to solving (2). 

Equation (2) can be solved by the predictor-corrector method, or by the method of 
fractional steps in two steps: 

F,T,c = F:,k - dyj dxi (G?w,I, - G.?-,A, 

F;;, = F& - 2 (H::,:,,, - H:‘&,,). 
(3) 

The two successive steps constitute a cycle of the calculation, which can be efficiently 
performed slince k and j are fixed in the first and second equations, respectively. A 
second-order scheme can be constructed by centering the spatial derivatives of F and 
G. The corresponding difference equation is 

J -l/2, k 

FIG. 1. Notation of the mesh of cells. 
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The split-up equations may have a form as follows: 

A simple analysis can be carried out to demonstrate the equivalence between (2) and 
(3) on the basis of linear operator notation. If dF = dV, dG = AdV, and dH = 
BdV, then (1) becomes 

Lv;:,l = v;,, (6) 
whereas (2) becomes 

L,V& = v,;,, and LJq;t, = v,T,, . (7) 

The operators are defined by 

where c1 = Aj,k Axi/Ayj and /3 = Bjsk dx</dz, . Upon substituting the second 
equation of (7) into the first equation, the following relation results: 

LyL,Vj,I< = L,LgVj.,< = LVj,, + U(Axi’)e 

Likewise, the equivalence between the second-order schemes (4) and (5) can be esta- 
blished by replacing (5) with 

The ADI scheme is also represented in the same notation: 

LvV& = L,v:,, and L,Vyj? = L,v,?,; . (9) 

The solution of V obtained from (8) and (9) is more accurate than that from (7) for 
smooth solutions. The first-order scheme of (7), however, is generally preferable over 
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the second-order schemes when V has sharp gradients embedded in the flowfield 
because it provides a lower-order numerical dissipation to damp small-wavelength 
oscillations due to numerical dispersion (Douglas [ll]). Finally, since the operators 
may not commute with each other in general, the following equations are used instead. 
Equations (2) and (4) in the actual applications are replaced by 

L,(L,)” L,v;:,2 = v:,, ) 

L,(L$ L,V$j = L&J2 LJ:,, ) 

to maintain the symmetry and the formal order of accuracy. 
The validity of approximating a multidimensional difference operator by a sequence 

of two-dimensional operators has not received full theoretical justification if the 
operators are nonlinear. Nevertheless, this method has been successfully applied 
for numerical solutions to various nonlinear flow problems and has recently been 
generalized by Li [12] to include both explicit and implicit operators for the computa- 
tion of shock and boundary-layer interaction. Other versions have been developed by 
Beam and Warming [9] to include three-time-level differencing and a fourth-order 
quotient for space derivatives. 

III. SOLUTION TO THE NONLINEAR DIFFERENCE EQUATIONS 

Equations (3) and (5) are strongly nonlinear; hence, a method of linearization is 
needed to reduce these equations into a solvable form. The following shows an 
iterative algorithm devised to treat this type of equation such that the conservative- 
law formulation can be retained throughout the iterations. 

If the column vectors F, G, and H are not only functions of V, but of V, and V, as 
well, they can be related directly by 

dF = PA dV, 
dG=PBdV-PCdV,-PDdVz, 

dH = PEdV - PFdV, - PGdV,, 

where P, A, B, C, D, E, F, and G are square matrices, PA can be interpreted as the 
Jacobian matrix of F with respect to V, and so on. Making use of these relations, 
iteration formulas are obtained according to the Newton-Raphson technique: 

v+’ = VI + sv, 

F2+l = Fz + (PA)z 6V, 

Gz+’ = Gz + (PB)I 6V - (PC)’ SV, - (PD)t6V,, 
(10) 

H’+l = Hz + (PE)I 6V - (PF)’ 6V, - (PG)z 6V, . 
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Here, I indicates the iteration count. Update functions are given on the left side of the 
equations, while previous functions are on the right side. Since new Jacobian matrices 
are computed at each iteration, the convergence of (10) is quadratic. For most applica- 
tions, no more than five iterations are needed to ensure that the SV’s are less than a 
reasonable magnitude of tolerance E. The prescribed value should be greater than the 
round-off error, but smaller than the truncation error due to the finite-difference 
approximation of (1). A check is made to see if I 6V 1 < E after each iteration. If every 
point on a fixed jth or kth line satisfies the condition, this line is dropped out of the 
iterative process. The iterations are terminated when every line has converged solu- 
tions. This procedure is also known as the Gauss-Seidel line iteration technique since 
the updated value is used immediately in the iteration procedure. 

The correction vector 6V is determined by solving a linear system of algebraic 
equations, which is obtained after substituting (10) into the first equation in (3) or 
(5). The system of equations has the form 

with j = 3, 4,..., JL - 1. The boundary conditions are incorporated into the coeffi- 
cients in the first and last equations; hence, they are slightly different from the coeffi- 
cients in the second equation. A general expression of these coefficients can be derived 
as a function of the Jacobian matrices and the mesh spacings: 

- (PC):Al,J(YjLl - Yj), (12) 

d. = e ‘yj 3 dx, (Fj’ - F,? + G:a,, - G;-,,, + (I - B)(G:+,,, - G:..,,,). 

Note that these groups of coefficients are used to solve for SVj at a fixed kth line. 
Hence, the subscript k is not shown for clarity. Equation (11) yields a second-order 
solution with 0 = 4, and a first-order solution with 0 = I. The weighting parameters 
are 01~ = l/(1 + R) and 01~ = qR, whe re R = Ayjpl/Ayj; likewise, PI and 8% are 
obtained using R = Ayj+JAyj . 

in order to derive (12) the derivatives of V are approximated by either forward or 

backward difference quotients in terms of V; viz., 

(Svg)j*l '2.k = C8Vj*l,k -  svj,lr)/(Yj=l - Yjh 

(8Vz)j*lf2,X*11.2 = (8Vjfl'2,k*l -  ~vi~l!2,kilMZlc*l -  Zk). 
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The difference quotient for the cross derivative of 6V, which requires updated values 
on the k & lth lines, is excluded from the expressions of uj , bj , and cj under the 
assumption that the magnitude of cross derivatives is much smaller than that of 
second derivatives. This approximation does not impede the accuracy of V as long as 
the residue vector, di , is evaluated rigorously. The rate of convergence undoubtedly 
will improve if 6V,‘s are included in the evaluation of the coefficients, but this cal- 
culation necessitates additional computer core for storing 6V in a two-dimensional 
array and has not been implemented. The boundary conditions are imposed on the 
3/2th line by a simple reflection technique to relate 6V, and 6V, . It is easy to show 
that 

The coefficient bJL remains unchanged because, on the upper boundary, it is simply 
6V, = 0. The solution to the second equation in (3) and (5) is obtained by the same 
algorithm. The resulting coefficients are 

Uk = “l(P E$_, + (PF)k-,!,/(Zk - Zk-l), 

b, = - (0 &$kW’~~6 + (a2 - /MW): - (W-,,,/(z, - zk-1) 

- (m1,+l/,/(zk,-l - Zk) (13) 

ck = - /%(pE):,, + (pF%.d(zk+, - zk), 

dk = (0 &/&)(Fkz - F,*) + Ht+:,,, - W-l,, + (1 - QW:,,,, - H:-,,A. 

The weighting parameters are determined from the ratios of dz,_,/dz, and dzkfl/dzk . 
An alternate linearizing procedure is to solve for Vz+l directly from Vz. The Newton- 

Raphson technique leads to relations such as 

FL +l = Fz + (PA) Z(VZ +l - Vz) 

The resultant coefficients closely resemble those in (12) and (13), but the accuracy may 
not be as good because the round-off error is larger due to j V / > / 6V / . Furthermore, 
the derivation of coefficients at the boundaries becomes more complex [7]. (SV, = 
6V, = 0 is replaced by V, = V, = V, .) 

Equations (12) and (13) are block tridiagonal systems of equations for which an 
efficient algorithm in Ref. [13] is readily adopted for solution. Note that as / SVj 1 
approaches E, 1 di / approaches f, which brings about the recovery of the conservative- 
law equations in (3) and (5) at the end of the iterations. This linearization algorithm 
and a similar procedure in Ref. [4] advocate successive iterations until the lineariza- 
tion error in the form of / 6V j is equal to or less than the truncation error caused by 
differencing. The overall accuracy of the solution has been found to rely on the 
satisfaction of the convergence tolerance parameter and could become unacceptable 
when a noniterative algorithm is used. Other than this, the present one differs from 
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those presented in Refs. [9, lo] in the form of Jacobian matrices and in the implicit 
differencing of the flux, stress, and heat conduction terms in G and H. Although this 
conservative algorithm is much less prone to nonlinear instability, it is not entirely 
obvious which will give more accurate results for the same computing time and 
storage. 

IV. GOVERNING EQUATIONS AND BOUNDARY CONDITIONS FOR 
FLOW OVER A FINITE-WIDTH PLATE 

The functions in (I), 

are defined by 

PU 
pu' t ii 

F= PUC 
PUbI 

(PC -c 3 u. 

r 

F z + G, -+ H, = 0, 

I3 G== I3 
(14) 

The computational space is defined by 0 < y < H and 0 < z < B, in which the plate 
lies on the z-axis and 0 < z < W (Fig. 2a). The governing equations are integrated 
along the x-axis in the y-z plane, subject to the following conditions: 

o<z,<w: 
4% z) = ~%(O, 21, v(0, z) = M’(0, z) = 0, 

e(0, z) = e,,, - ~ -- 2’ ’ e (0 z) 
y+l Pr ” ’ P,(O, z) = 0; 

W<z,<B: 

%/a z> = M'ar(O, z) = e,(O, z) = p,(O, z) = py(O, z) = 0, 
v(0, z) = 0 if CY = 0 and v,(O, z) = 0 if ti # 0; 

z > 0: 

u(H, z) = U, cos a, v(H, z) = -U, sin 01, w(H, z) = 0, 

@-A 4 = e, , AH, z) = pm , p(K z> = pm ; (15) 
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y > 0: 

u( y, B) = U, cos a, v(y, B) = --Urn sin 01, W(Y, B) = 0, 

e(y,B)=em, P(Y, B) = P= 3 P(Y.B) =pm, 

%(Y, 0) = Vz(Y, 0) = ez(Y, 0) = P,(Y, 0) = Pz(Y, 0) = 0, 

W(Y, 0) = 0; 

K=l 2 3 KS KL J 

-W -I 

b a I 

FIG. 2. Schematic of the computational domain. (a) The coordinate system; (b) the cell system. 

where p, U, D, W, p, and e are, respectively, the density, velocity components in (x, y, z), 
pressure, and internal energy. The total internal energy is E = e + 0.5 (2 + u2 + w”). 
The stress components are defined as follows: 

TYX = -PC! 7 TYZ = TZY = -p(wt/ + 4, Tzx = -t-% 3 

UY = p - (h + 2/L) v, - xw, , (16) 
u, = p - (A + 2p) w, - hv, . 

The heat fluxes are obtained from the expressions 

qy = - $ e, and 
v 

qz = - $- e, , 
v (17) 
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where 2X + 3~ = 0, K = Cpp/Pr, e = CvT, and y = Cp/Cv . The p is the viscosity 
coefficient given for air by 

p = 2.27 x 10-s 7- ;;;f36 (+j . (18) 

The coefficient of thermal conductivity, K, is related to the Prandtl number, Pr = 0.71. 
The specific heats at constant pressure and volume are C,, and Cv ; their ratio, y, is 
equal to 1.4 for perfect air. The temperature is T; the angle of attack is a. 

Equation (16) is supplemented by the equation of state 

p = (y - 1) P. (19) 

Note p is different from p used in (14), which represents a known streamwise pressure 
gradient because of the stability consideration in the numerical integration to be dis- 
cussed in Section V. 

The boundary conditions have taken into account the slip in velocity parallel to the 
wall and the jump in temperature. The mean free path of air, A, can be estimated by 
A = (ay/2)lj2 (M/Re) = (7r/2~p)l/~p. The Reynolds number, Re, and the viscous- 
inviscid interaction parameter, x, are defined as Re, = pmUmxlp, and xm = M,” 
(c/Re,)1/2, where M, is the free-stream Mach number, and c is the Chapman-Rubesin 
constant (c = pT,/p,T). Equation (15) also includes extraneous boundary conditions 
off the plate on y = 0 and at the symmetry plane z = 0, which are needed to simplify 
the computation. 

The Jacobian matrices used in (10) and (13) are given below: 

P= 

B= 

1 M’ u v 1 i 0 0 0 0 p 0 0 0 0 p 0 0 0 0 1 ) 

h2 PU PU PM' l/g / s/p we z; 0 0 0 0 0 v me ; 0 v 00 0 0 0 v gpv g 0 0 1 3 
1 M’ 0 0 U’ 0 0 i 0 0 1 

A= 
/ gue ii 0 0 p + P ;! 0 gP 00 00 ouo 2400 0 0 gpu. o- 0 

r 00 0 0 

3 (20) 

0 1 I 

I 

op 0 0 0 
c-f 0 0 h+2p 0 0 ) 

00 0 p 0 
00 0 0 w4Pr i 

r 
000 0 0 

,OPO 0 0 1 
0 3 

0 0 0 x+2p 000 0 0 J m-W 

whereq2=z?+U2+W2andg=y- 1. 
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V. NONUNIFORM MESH SYSTEM AND STABILITY ANALYSIS 

The computational domain outlined in Section IV is divided into a mesh of rec- 
tangular cells, each of which has variable length and height. The smallest cell is 
located at the leading edge (X = 0), whereas the largest cell is at the opposite corner 
of the region (X = L and y = H). Integers are used to designate the cell number; 
half-integers designate the line between two cells. The system of cells is determined 
prior to the computation by means of the following procedure. First an estimate is 
made of dy, or Ay, , using the smallest value of the boundary-layer thickness at 
x = L and the mean free path of the free stream; i.e., dy, = min(6, A), where 6 = 
0.3L/(Re$/2 and A is given in Section IV. Then an exponential function is employed 
to determine dy, , where j = 3,4 ,..., JF. This function relates the transformed 
coordinate J to the physical coordinate by y = (ecB - 1) h/(ec - I), 0 < j < 1 and 
0 < y < h. The parameter c is determined iteratively in order to satisfy the require- 
ments that y1 = 0.5dy,, yj+l = yj + 0.5dyj , and yJF = h, where JF is the number 
of fine cells in the y direction. On top of this system of fine cells, there is a system of 
coarse cells. The height of these cells is uniform and is obtained from dy = (H - h)/ 
(JL - JF) with yj+l = yj + 0.5dy and y, = H, where JL is the total number of 
cells along thej-axis. The width of these cells is nonuniform in the region near the 
side edge and uniform elsewhere. The procedure used to determine AZ, and zk is 
similar to that for Ay, and yi except that for this case AZ,, = AZ,,-, is specified to 
ensure that fine resolution is provided at the side edge; KS designates the selected 
location of the side edge. Likewise, Axi and xi are estimated using the requirement 
that Ax, = A, and xIL = L, where IL is the total number of integration steps (Fig. 2b). 

The mesh of cells is constructed to properly resolve the gradients of flow properties 
that may occur near the leading edge and around the side edge. For a finite plate at an 
angle of attack, it should be complemented with formal second-order accuracy in 
Ay, or Azk in the approximations of the flux, stress, and heat-conducting terms in 
F, G, and H. For simplicity, those terms appearing in G are considered. The conven- 
tional two-point formula is used to represent y-derivatives, while a weighted inter- 
polation formula is used for fluxes; viz., 

Therefore, the accuracy of representation of flux terms is equal to the three-point 
formula applied to the nonuniform mesh of points. The mixed derivatives are 
evaluated as follows, using both the old and updated iteration values because the 
iteration sweeps the columns from k = 2 to k = KL - 1: 

kw),+l/2,k = M+l*k+l - 4+1*rc-1 - CL+1 

+ 4’:,k-l>/(v~+l - YMY(zk+l - Zk-1). 
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The boundary conditions in (IS), when imposed on the cell lines, require that the 
dependent variables and their normal gradients be zero. A finite-difference representa- 
tion of the derivatives is made consistent with those inside the computational domain. 
For example, V,,k = -V,,, and Vj.1 = -Vj,Z approximate, respectively, (V),,, = 0 
and (I&, = 0. In a similar manner, Vl,k = V,,, and Vj,l = Vj,Z approximate 
(V,),=, = 0 and (V,),,, = 0. Additional conditions are required to ensure there are 
no fluxes across the wall. For example, this is accomplished in G as follows: 

G :3:2,k = (0, Tyz, uy, Tyz , %,)‘* 

The computational efficiency and stability of an implicit technique are not dictated 
by the fine cells on the y-z plane. A simple analysis shows the present algorithm is 
unconditionally stable. A system of quasilinear equations corresponding to (1) is 

AV, + BV, - CV,, = 0, (21) 

where A, B, and Care given in Section IV as functions of V. Equation (21) is composed 
of the hyperbolic and the parabolic equations whose difference forms, obtained from 
the centered scheme for a mesh of uniform cells, are 

A ji(V;+l - Vpy), (22) 

&(V:+’ _ qtl'2 + v;';'2). 
(23) 

The amplification matrices for these equations are obtained using the Von Neumann 
method [14]: 

Gh = / - (-1)1/2 aA-lB sin’ I$ 
/ + (- l)lj2 aA-lB sin2 4 ’ (24) 

G 
P 

= I - (- l)lj2 PA-T sin2 $/2 
I + (- I)ljz PA-T sin2 $/2 ’ (25) 

where 01 = (~ix,/2dy,)~, /3 = dxJ(d~~)~, 4 =jdy, , and I is the unit matrix. The 
eigenvectors are obtained by solving polynomials of the equations 

I ZAh - A-‘B 1 = 0 and 1 IA, - A-T I = 0. 



SUPERSONIC VISCOUS FLOWS 369 

Since they are real variables, 1 Gh j < 1 and j GP / < 1 are implied. Thus (22) and (23) 
are always stable. If the backward scheme is used, the numerators in (24) and (25) are 
replaced by an identity matrix. Following the same procedure, the same conclusion is 
reached. 

Numerical instability could arise if the streamwise pressure is treated on the same 
basis as other variables in (14). For this case, F and A become 

F+;;$j, Aji; jpe ; ; ii. 

The corresponding eigenvalues are 

Ah = (f , ; , 
uv * ~(22 + v2 - a2)1/2 

u2 - a2 ) , (28) 

(29) 

They will have complex components if u2 + a2 < u2, where a is the local sonic speed. 
Furthermore, X, and X, in (29) are complex; therefore, (22) and (23) become unstable. 
This stability problem has been recognized in earlier works solving the parabolic 
Navier-Stokes equations and pe has been neglected or approximated by &, the 
pressure gradient obtained at the immediate upstream station [l-4]. The second 
approach is adopted, because it is found in [15] that this approximation gives satis- 
factory results in comparison with an exact solution near the leading edge. For 
incompressible flows the pressure must be determined from Poisson’s equation. 
Meaningful solutions can be obtained only after the ellipticity of the flow problem is 
correctly handled. 

The computational efficiency of this algorithm is relatively difficult to assess. The 
advantage of selecting the larger step increments and extremely fine cell sizes is often 
penalized by a relatively large amount of computation time required for solving the 
nonlinear equations. In fact, more iterations are required in the procedure described 
in Section III for regions where properties change rapidly than for regions near the 
undisturbed free stream. 

VI. DISCUSSION OF THE RESULTS 

The numerical computations have focused on a case that has been studied and 
reported in Ref. [I]. A limited amount of data has also been available from a test 
facility consisting of a nozzle placed inside a Mach 12 blowdown tunnel. Due to the 
large drop in stagnation pressure, extremely low densities are achieved in the test 
section. The free stream conditions upstream of the plate have a Reynolds number 
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(Re, = 300 per inch) and a Mach number (M, = 5.15). The free stream temperature 
is T, = 230” R, while the wall temperature is Tw = 460” R. The numerical results 
have been obtained from an ADI scheme using a mesh of points with constant spacings 
in the transverse, lateral, and streamwise directions. Comparisons with the experi- 
mental data have been made at x z 10; this station displays strong merged-layer 
characteristics. 

The computational domain and the mesh of cells have been selected in a different 
manner than those used previously in an attempt to predict the flowfield structures 
around the side edge. The size of the domain is given as follows: L = 2 in., H =-- 2.4 in., 
h = 0.48 in., W = 2.16 in., and B = 3.03 in. The cell system is designated by the 
notation (JF) JL x KL(KS) as (12) 32 x 32(20); the nomenclature has been defined 
in Section IV. The resulting cell dimensions are dy, =- dy, = 0.024 in. and LIZ,, = 
AZ,, = 0.0123 in. A schematic of the cell system is shown in Fig. 2b. The streamwise 
increments are also nonuniform and are determined after assigning dx, == 0.024 in. 
and IL = 30. Note that the smallest cell used is less than the mean free path, which is 
fl, = 0.03 in. for this case. 

Comparisons are first made among the theoretical predictions of the pressure 
distributions on the plate in the lateral direction. Figure 3a shows that there are 
significant differences in pressure values near the side edge, but a good agreement 
toward the plane of symmetry and the opposite side in the free stream. The centered 
solution of (4) indicates a very sharp drop of pressure right at the side edge, the 
backward solution of (2) predicts a moderate variation, whereas the previous AD1 
results display very little change in pressure across the side edge. Assessing the ac- 
curacy yielded by these computations is very difficult without data from other sources. 
Observations of earlier published results indicate that the shear layer characteristics 
might have been partially ignored because the mesh system is relatively coarse, even 
though the computational domain is less than half of that used in the present com- 
putations. On the other hand, the appreciable differences between the centered and 
the backward solutions are affected to some extent by the numerical dissipations of the 
schemes. The centered scheme is known to provide more accurate results if the solution 
is smooth, but may exaggerate the results for a rapidly varying solution. Further, due 
to its lack of damping, small-wavelength disturbances tend to grow and eventually 
become outbound. Indeed, in the present calculation the centered solution has en- 
countered some difficulties with the iterative procedure after reaching x = 6.6 at 
Z = 25 when negative densities appear in some cells neighboring the side edge. In 
constrast, the results obtained from the dissipative backward scheme are stable 
throughout the integration and appear to yield reasonable accuracy. For this reason, 
the backward scheme has been employed in the entire study. 

In addition to the differences existing between theoretical pressure results, there is 
also slight disagreement with the available experimental data in the flow flux at the 
midspan of the plate, as shown in Fig. 3b. The reason for the deviation within the 
boundary layer has not yet been determined. The theoretical predictions of flux agree 
with each other very well except near the region where the maximum value occurs. 
These curves are not asymptotic to zero at 1~ = 0 since the slip velocity is used there. 
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FIG. 3. Comparison of present results with available numerical and experimental data. (a) Lateral 
pressure distributions on y = 0. (b) Transverse mass fluxes at .z = 0. 

Figure 4 presents a series of pressure distributions versus the z-coordinate. The 
pressure starts out with the free stream value, slowly builds up its magnitude as the 
slip velocity reduces, and finally reaches the peak value, p = 5.25~~ at x = 19.5. At 
the beginning there is a smooth transition from the surface pressure to the free stream 
pressure outside of the plate. In Fig. 4a the lateral pressure distribution resembles 
closely that within a normal shock. Figures 4b-d show the detailed variations of 
pressure as the flow moves downstream. A discontinuity develops within the shear 
layer surrounding the edge, then dissipates and diffuses sideways as the shear layer 
grows thicker and the magnitude of gradients reduces. At the end of the computation, 
x = 5.35 or x = 2 in., the side edge starts to lose its influence on the local flowfield. 
The mechanism producing the pressure discontinuities must originate from the strong 
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pressure distribution. Unfortunately, no experimental data are available in this 
region, so confirmation of the prediction cannot be made at this time. Note that the 
side edge effect has almost reached the centerline, as indicated in Fig. 4e. This points 
out the possibility that the flow cannot be considered two-dimensional at x = L when 
the aspect ratio, W/L, is less than unity. This observation agrees with the findings 
reported in Ref. [l]. 

The distributions of the coefficients of skin friction, T~~/~~~U,~, and of heat transfer, 
(4 + mzrYPm~~(~tm - II,,), are given in Figs. 5a and b, respectively. As explained 
earlier, the shear layer increases its extent with decreasing values of x, and moreover, 
the shear layer creates relatively higher heating at the edge in comparison to that at 
the center. Judging from these figures, however, the flowfield remains two-dimensional 
at the centerline; its characteristics have been discussed in full detail in Ref. [I51 and 
the references cited therein. 

Figure 6 shows the velocity vector, constant contours of W, pressure, and tempera- 
ture plotted on the plane normal to the x-coordinate at x = 5.35. It indicates an 
upward motion of flow above the plate. Near the edge, however, a sideways motion 
predominates. Away from the side region, there are no transverse and lateral velocity 
components. The lateral velocity is plotted in constant contours to show that the 
highest value occurs somewhere out in the free stream and that it changes rapidly at 
the side edge. The pressure contours exhibit a leading-edge oblique shock and a side- 
edge shock next to the side edge. The temperature contours disclose the location of a 
discontinuity near the edge, which has a stronger intensity than the one on top of the 
plate. 

More computations have been carried out at angles of attack 01 = 10” and -lo”, 
which represent the wind and the lee sides of the plate, respectively. The primary 
purpose is to check the capability of the numerical algorithms under more severe 
conditions. From the practical point of view, a computation of the entire flowfield on 
both sides of the plate would be of interest, but this would necessitate extensive 
modification of the program and would add little value to the aforementioned objec- 
tive. In the present approach, these two cases are treated independently, with boundary 
conditions imposed at y = 0 and B < z < W to allow for the continuation of the flow 
vector, and at y = H and z = B to make the free stream velocity equal to u, = U, 
cos cy. and v, = - U, sin (Y [see (15)]. The computational domain and the cell system 
are the same as those for 01 = 0”. Despite the fact that this approach sacrifices physical 
reality, the predictive potential or limitation of the algorithm can still be evaluated 
and assessed. 

Figure 7 shows the pressure distributions versus the z-coordinate at selected x- 
stations. The wiggles in the pressure distributions are believed to be caused by in- 
sufficient space resolution since flow properties change more drastically around the 
side edge. Regardless of the local numerical problems, the computation has been 
completed at x = 2 inches for both cases. The x-component of shear stress and the 
heat fluxes behave in the same manner as those predicted for OL = 0”; hence, they are 
not repeated. A new and interesting phenomenon related to CY. # 0” is that the lateral 
flow on the lee side has reversed its direction from that on the wind side in a limited 
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FIG. 7. hessore distributions along y = 0 on compression and expansion sides of the plate for 
10 degrees of flow incidence. (a) x = 0.185 in., (b) x = 0.796 in., (c) x = 2 in. 
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region close to the side edge. Shown in Fig. 8 are the skin friction coefficients, 
~llzi4Pm urn29 versus the z-coordinate on either side of the plate. The influence of the side 
edge is felt at an earlier station on the center plane. The lateral extent of reversal is 
seen to be proportional to the streamwise coordinate, and its magnitude becomes 
stronger as x increases. Figure 9 shows that the transverse extent of the cross-flow 
reversal also increases with X. For a plate of aspect ratio equal to unity, the flow on 
the plane of symmetry is definitely not two-dimensional when the plate is placed at an 
angle to the free stream. 

All the computations were performed on an IBM 370-168 computer using approxi- 
mately 4 min of central processing unit time. The computation time required can vary 
from one case to another because, even with the same number of cells and streamwise 
steps, some may need more iterations in solving the nonlinear difference equations 
than others. An understanding of flow characteristics is helpful since the careful 
selection of computational region and mesh could reduce the requirement of computa- 
tion time and increase the accuracy of the results. 

a= -loo Z/h = 4.5 

REVERSED FLOW 
/ 

2.5 

-6 -4 -2 0 2 4 

w 
UC=3 

x 102 

FIG. 9. Profiles of reversed lateral velocities at the side edge on the expansion side of the plate. 
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VII. CONCLUSIONS 

The finite-difference algorithms constructed using the method of fractional steps 
have shown promising potential in solving the parabolic Navier-Stokes equations. 
They are featured with the conservative-law formulation in the difference equations 
and with a linearization procedure to maintain consistency with conservative law. If 
the method is used after linearizing the governing equations, other variants of dif- 
fering capabilities can be devised. This effort is being pursued in the attempt to 
improve computational efficiency. 

This study has concentrated on the computation of viscous flow passing a finite- 
width plate and has utilized both centered and backward differencing schemes to 
integrate the equations along the streamwise coordinate. The applicability of the 
centered scheme has been found to be susceptible to shocks and shear layers in the 
flowfield and, hence, this scheme is not recommended in such calculations. The 
solutions obtained from the backward scheme appear to be stable and reasonably 
accurate. 

Conclusions pertaining to the flat-plate problem at flow incidence are summarized 
as follows: 

(1) This work has suggested the existence of a shear layer around the side edge 
of the plate. Its intensity reduces from the peak value near the leading edge as the 
flow moves downstream, but it remains discernible well into the weak-interaction 
regime. 

(2) The pressure distribution along the centerline is more sensitive than other 
measurable quantities to the flow expansion about the edge. At a small flow incidence 
angle, the flow should be treated three-dimensionally when the aspect ratio, W/L, is 
close to unity. 

(3) The parabolic formulation is restricted to a class of viscous flow problems 
which do not involve a local reversed flow region in the direction of the main stream. 
A related problem concerning the flowfield in a rectangular corner has also been used 
to justify the present method of solution; the results will be reported in the near 
future. 
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